Factorial Function ! (2024)

Example: 4! is shorthand for 4 × 3 × 2 × 1

Factorial Function ! (1)

The factorial function (symbol: !) says to multiply all whole numbers from our chosen number down to 1.

Examples:

  • 4! = 4 × 3 × 2 × 1 = 24
  • 7! = 7 × 6 × 5 × 4 × 3 × 2 × 1 = 5040
  • 1! = 1

We usually say (for example) 4! as "4 factorial", but some people say "4 shriek" or "4 bang"

Calculating From the Previous Value

We can easily calculate a factorial from the previous one:

Factorial Function ! (2)

As a table:

n n!
1 1 1 1
2 2 × 1 = 2 × 1! = 2
3 3 × 2 × 1 = 3 × 2! = 6
4 4 × 3 × 2 × 1 = 4 × 3! = 24
5 5 × 4 × 3 × 2 × 1 = 5 × 4! = 120
6 etc etc

  • To work out 6!, multiply 120 by 6 to get 720
  • To work out 7!, multiply 720 by 7 to get 5040
  • And so on

Example: 9! equals 362,880. Try to calculate 10!

10! = 10 × 9!

10! = 10 × 362,880 = 3,628,800

So the rule is:

n! = n × (n−1)!

Which says

"the factorial of any number is that number times the factorial of (that number minus 1)"

So 10! = 10 × 9!, ... and 125! = 125 × 124!, etc.

What About "0!"

Zero Factorial is interesting ... it is generally agreed that 0! = 1.

It may seem funny that multiplying no numbers together results in 1, but let's follow the pattern backwards from, say, 4! like this:

Factorial Function ! (3)

And in many equations using 0! = 1 just makes sense.

Factorial Function ! (4)

Example: how many ways can we arrange letters (without repeating)?

  • For 1 letter "a" there is only 1 way: a
  • For 2 letters "ab" there are 1×2=2 ways: ab, ba
  • For 3 letters "abc" there are 1×2×3=6 ways: abc acb cab bac bca cba
  • For 4 letters "abcd" there are 1×2×3×4=24 ways: (try it yourself!)
  • etc

The formula is simply n!

Now ... how many ways can we arrange no letters? Just one way, an empty space:

Factorial Function ! (5)

So 0! = 1

Where is Factorial Used?

One area they are used is in Combinations and Permutations. We had an example above, and here is a slightly different example:

Factorial Function ! (6)

Example: How many different ways can 7 people come 1st, 2nd and 3rd?

The list is quite long, if the 7 people are called a,b,c,d,e,f and g then the list includes:

abc, abd, abe, abf, abg, acb, acd, ace, acf, ... etc.

The formula is 7!(7−3)! = 7!4!

Let us write the multiplies out in full:

7 × 6 × 5 × 4 × 3 × 2 × 14 × 3 × 2 × 1 = 7 × 6 × 5

That was neat. The 4 × 3 × 2 × 1 "cancelled out", leaving only 7 × 6 × 5. And:

7 × 6 × 5 = 210

So there are 210 different ways that 7 people could come 1st, 2nd and 3rd.

Done!

Example: What is 100! / 98!

Using our knowledge from the previous example we can jump straight to this:

100!98! = 100 × 99 = 9900

A Small List

n n!
0 1
1 1
2 2
3 6
4 24
5 120
6 720
7 5,040
8 40,320
9 362,880
10 3,628,800
11 39,916,800
12 479,001,600
13 6,227,020,800
14 87,178,291,200
15 1,307,674,368,000
16 20,922,789,888,000
17 355,687,428,096,000
18 6,402,373,705,728,000
19 121,645,100,408,832,000
20 2,432,902,008,176,640,000
21 51,090,942,171,709,440,000
22 1,124,000,727,777,607,680,000
23 25,852,016,738,884,976,640,000
24 620,448,401,733,239,439,360,000
25 15,511,210,043,330,985,984,000,000

As you can see, it gets big quickly.

If you need more, try the Full Precision Calculator.

Interesting Facts

Six weeks is exactly 10! seconds (=3,628,800)

Here is why:

Seconds in 6 weeks: 60 × 60 × 24 × 7 × 6
Factor some numbers: (2 × 3 × 10) × (3 × 4 × 5) × (8 × 3) × 7 × 6
Rearrange: 2 × 3 × 4 × 5 × 6 × 7 × 8 × 3 × 3 × 10
Lastly 3×3=9: 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 × 10

Factorial Function ! (7)

There are 52! ways to shuffle a deck of cards.

That is 8.0658175... × 1067

Just shuffle a deckof cards and it is likely that you are the first person ever with that particular order.

There are about 60! atoms in the observable Universe.

60! is about 8.320987... × 1081 and the current estimates are between 1078 to 1082 atoms in the observable Universe.

70! is approximately 1.197857... x 10100, which is just larger than a Googol (the digit 1 followed by one hundred zeros).

100! is approximately 9.3326215443944152681699238856 x 10157

200! is approximately 7.8865786736479050355236321393 x 10374

A Close Formula!

n! ≈ (ne)n 2πn

The "≈" means "approximately equal to". Let us see how good it is:

nn!Close Formula
(to 2 Decimals)
Accuracy
(to 4 Decimals)
110.920.9221
221.920.9595
365.840.9727
42423.510.9794
5120118.020.9835
6720710.080.9862
750404980.400.9882
84032039902.400.9896
9362880359536.870.9908
1036288003598695.620.9917
113991680039615625.050.9925
12479001600475687486.470.9931

If you don't need perfect accuracy this may be useful.

Note: it is called "Stirling's approximation" and is based on a simplifed version of the Gamma Function.

What About Negatives?

Can we have factorials for negative numbers?

Yes ... but not for negative integers.

Negative integer factorials (like -1!, -2!, etc) are undefined.

Let's start with 3! = 3 × 2 × 1 = 6 and go down:

2! = 3! / 3 = 6 / 3 = 2
1! = 2! / 2 = 2 / 2 = 1
0! = 1! / 1 = 1 / 1 = 1
which is why 0!=1
(−1)! = 0! / 0 = 1 / 0 = ?
oops, dividing by zero is undefined

And from here on down all integer factorials are undefined.

What About Decimals?

Can we have factorials for numbers like 0.5 or −3.217?

Yes we can! But we need to use the Gamma Function (advanced topic).

Factorials can also be negative (except for negative integers).

Half Factorial

But I can tell you the factorial of half (½) is half of the square root of pi .

Here are some "half-integer" factorials:

(−½)! = √π
(½)! = (½)√π
(3/2)! = (3/4)√π
(5/2)! = (15/8)√π

It still follows the rule that "the factorial of any number is that number times the factorial of (1 smaller than that number)", because

(3/2)! = (3/2) × (1/2)!
(5/2)! = (5/2) × (3/2)!

Can you figure out what (7/2)! is?

Double Factorial!!

A double factorial is like a normal factorial but we skip every second number:

  • 8!! = 8 × 6 × 4 × 2 = 384
  • 9!! = 9 × 7 × 5 × 3 × 1 = 945

Notice how we multiply all even, or all odd, numbers.

Note: if we want to apply factorial twice we write (n!)!

2229, 2230, 7006, 2231, 7007, 9080, 9081, 9082, 9083, 9084

Combinations and Permutations Gamma Function Numbers Index

Factorial Function ! (2024)

FAQs

What is the factorial of 100 voice answers? ›

The answer of what is the factorial of 100

is 9.3326215443944E+157. The number of trailing zeros in 100! is 24. The number of digits in 100 factorial is 158.

What is the easiest way to solve a factorial? ›

To do factorials, start by determining which number you're computing the factorial for, which will be the number that's in front of the exclamation point. Then, write out all of the numbers that descend sequentially from that number until you get to 1. Finally, multiply all of the numbers together.

What is the most optimized way to calculate factorial? ›

The best algorithm that is known is to express the factorial as a product of prime powers. One can quickly determine the primes as well as the right power for each prime using a sieve approach. Computing each power can be done efficiently using repeated squaring, and then the factors are multiplied together.

What is the general rule for factorial? ›

The Factorial of a whole number 'n' is defined as the product of that number with every whole number less than or equal to 'n' till 1. For example, the factorial of 4 is 4 × 3 × 2 × 1, which is equal to 24. It is represented using the symbol '!'

What does 9.332622 E 157 mean? ›

After calculation, the value of Factorial 100 comes out to be equal to 9.332622e+157.

Why is 5 factorial 120? ›

To find 5 factorial, or 5!, simply use the formula; that is, multiply all the integers together from 5 down to 1. When we use the formula to find 5!, we get 120. So, 5! = 120.

What is the basic logic for factorial? ›

In short, a factorial is a function that multiplies a number by every number below it till 1. For example, the factorial of 3 represents the multiplication of numbers 3, 2, 1, i.e. 3! = 3 × 2 × 1 and is equal to 6.

How big is 52 factorial? ›

' (“52 factorial”) which means multiplying 52 by 51 by 50… all the way down to 1. The number you get at the end is 8×10^67 (8 with 67 '0's after it), essentially meaning that a randomly shuffled deck has never been seen before and will never be seen again.

Can you simplify a factorial? ›

Simplify factorial quotients by canceling like integers in the numerator and denominator. Multiply all the remaining integers in the numerator. Multiply all the remaining integers in the denominator. Divide the product in the numerator by the product in the denominator.

What is the fastest algorithm to compute the factorial? ›

The algorithm PrimeSwing, because it is the (asymptotical) fastest algorithm known to compute n!. The algorithm is based on the notion of the 'Swing Numbers' and computes n! via the prime factorization of these numbers.

Is factorial the fastest growing function? ›

Factorials grow faster than exponential functions, but much more slowly than double exponential functions. However, tetration and the Ackermann function grow faster.

What is the mathematical method for factorial? ›

A factorial is a mathematical operation that you write like this: n! . It represents the multiplication of all numbers between 1 and n. So if you were to have 3! , for example, you'd compute 3 x 2 x 1 (which = 6).

What grade math is factorial? ›

Grades 6, 7 and 8 | Math | Middle School | Calculations - Factorials - Introduction.

What are factorials used for in real life? ›

A factorial is used to find how many ways objects can be arranged in order. In a factorial, all of the objects are used and none of the objects can be used more than once. An example is arranging books on a shelf.

What is the theorem of factorials? ›

In general, the factorial [1-12] for positive integer n, denoted by n!, is the product of all positive integers less than or equal to n. For example, 5! = 1 × 2 × 3 × 4 × 5 = 720.

What is the factorial of 100 in words? ›

Answer: The approximate value of 100! is 9.3326215443944E+157. The value of 100 factorial (100!) is a large number that can be calculated using mathematical software or calculators designed to handle such computations.

What is 100 factorial exact? ›

Through the means of the formula and using it for the calculation of factorial 100, it can be inferred that the factorial for 100 would be equivalent to 9.332621544 E + 157.

How many zeros are in 100 factorial? ›

So the number of zeros at the end of 100! are 24.

How do you find the number of digits in 100 factorial? ›

The factorial of 100 is the multiplication 100 x 99 x 98 x … x 3 x 2 x 1 in which 100 is multiplied by every whole number below it. The answer is 158-digits long.

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Jerrold Considine

Last Updated:

Views: 6418

Rating: 4.8 / 5 (58 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Jerrold Considine

Birthday: 1993-11-03

Address: Suite 447 3463 Marybelle Circles, New Marlin, AL 20765

Phone: +5816749283868

Job: Sales Executive

Hobby: Air sports, Sand art, Electronics, LARPing, Baseball, Book restoration, Puzzles

Introduction: My name is Jerrold Considine, I am a combative, cheerful, encouraging, happy, enthusiastic, funny, kind person who loves writing and wants to share my knowledge and understanding with you.